Tomography problem for the polarized - radiation transfer equation
نویسنده
چکیده
In this work, an inverse problem for the time-independent vector transfer equation for polarized radiation in isotropic medium is examined. In the problem, it is required to find the attenuation factor from known solution of the equation at the medium boundary. A formula is derived that relates the Radon transform of the attenuation factor with the radiation-flux density at the boundary. The uniqueness theorem for the solution of the tomography problem is proved.
منابع مشابه
Inverse Boundary Design Problem of Combined Radiation-convection Heat Transfer in Laminar Recess Flow
In the present work, an inverse analysis of combined radiation and laminar forced convection heat transfer in a two-dimensional channel with variable cross sections is performed. The conjugate gradient method is used to find the temperature distribution over the heater surface to satisfy the prescribed temperature and heat flux distributions over the design surface. The fluid is considered to b...
متن کاملExact Solution for Electrothermoelastic Behaviors of a Radially Polarized FGPM Rotating Disk
This article presents an exact solution for an axisymmetric functionally graded piezoelectric (FGP) rotating disk with constant thickness subjected to an electric field and thermal gradient. All mechanical, thermal and piezoelectric properties except for Poisson’s ratio are taken in the form of power functions in radial direction. After solving the heat transfer equation, first a symmetric dist...
متن کاملNon-Fourier heat conduction equation in a sphere; comparison of variational method and inverse Laplace transformation with exact solution
Small scale thermal devices, such as micro heater, have led researchers to consider more accurate models of heat in thermal systems. Moreover, biological applications of heat transfer such as simulation of temperature field in laser surgery is another pathway which urges us to re-examine thermal systems with modern ones. Non-Fourier heat transfer overcomes some shortcomings of Fourier heat tran...
متن کاملAnalytical solution of the radiative transfer equation for polarized light
A new formalism is introduced for the transfer of polarized radiation. Stokes parameters are shown to be four– vectors in a Minkowski-like space and, most strikingly, the radiative transfer equation (RTE) turns out to be an infinitesimal transformation under the Poincaré (plus dilatations) group. A solution to the transfer equation as a finite element of this group is proposed.
متن کاملConjugate problem of combined radiation and laminar forced convection separated flow
This paper presents a numerical investigation for laminar forced convection flow of a radiating gas in a rectangular duct with a solid element that makes a backward facing step. The fluid is treated as a gray, absorbing, emitting and scattering medium. The governing differential equations consisting the continuity, momentum and energy are solved numerically by the computational fluid dynamics t...
متن کامل